

GCE A LEVEL MARKING SCHEME

SUMMER 2018

A LEVEL CHEMISTRY - COMPONENT 3 A410U30-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

COMPONENT 3: CHEMISTRY IN PRACTICE

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

0	Marking dataila		Marks available								
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac				
1	Indicative content										
	Reaction 1										
	 add ammonia solution to the pale blue copper(II) sulfate solution [Cu(H₂O)₆]²⁺ 										
	 royal blue coloured solution formed [Cu(H₂O)₂(NH₃)₄]²⁺ ions 										
	• $[Cu(H_2O)_6]^{2+}(aq) + 4NH_3(aq) \rightarrow [Cu(H_2O)_2(NH_3)_4]^{2+}(aq) + 4H_2O(I)$										
	Reaction 2										
	 add concentrated hydrochloric acid to the pale blue copper(II) sulfate solution 										
	yellow-green solution formed										
	• [CuCl ₄] ²⁻ ions	2	4		6		4				
	• $[Cu(H_2O)_6]^{2+}(aq) + 4CI^-(aq) \rightarrow [CuCl_4]^{2-}(aq) + 6H_2O(I)$										
	credit any correct variations on these reactions e.g. dropwise addition of ammonia solution to copper(II) sulfate solution giving pale blue precipitate of copper(II) hydroxide										

5-6 marks Product colours and formulae given for two reactions; good attempt at equations for both The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary is used accurately throughout.
3-4 marks Outline of both reactions including colours and formulae of products The candidate constructs a coherent account including many of the key elements of the indicative content. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.
1-2 marks Outline of one of the reactions including colour or formula of product The candidate attempts to link at least two relevant points from the indicative material. Coherence is limited by omission and/or inclusion of irrelevant materials. There is some evidence of appropriate use of scientific conventions and vocabulary.
0 marks The candidate does not make any attempt or give an answer worthy of credit.
Question 2 total 2 4 0 6 0 4

	0	otion	Marking dataila			Marks	available)	
	Question		Marking details		AO2	AO3	Total	Maths	Prac
2	(a)		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2		2		
	(b)		award (1) for reagents aqueous iodine and aqueous sodium hydroxide aqueous potassium iodide and aqueous sodium chlorate(I) award (1) for observation yellow crystalline solid formed 	2			2		2
	(c)		CH ₃ CH ₂ CH ₂ CI / CH ₃ CH ₂ CH ₂ CH ₂ Br / CH ₃ CH ₂ CH ₂ CH ₂ I (1) (CH ₃) ₂ CHCOOH (1)		2		2		

0.10	stion	Marking dataila			Marks a	available	,	
Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(d)		moles of nitrogen gas = 0.269 mol (1) mass of 1-aminobutane used = 19.7 g (1)						
		volume of 1-aminobutane = 26.6 cm ³ (1)		3		3	2	
(e)	(i)	conical flask connected to a gas syringe (1)						
		constant temperature water bath (20°C) (1)	2			2		2
	(ii)	points plotted correctly (±½ square) (1)						
		curve of best fit drawn (1)	2			2	2	
	(iii)	n(benzenediazonium chloride) = 0.0055 mol (1)						
		using $pV = nRT$						
		$V = \frac{0.0055 \times 8.31 \times 293}{1.01 \times 10^5} $ (1)						
		$V = 133 \text{ cm}^3$ (1)		3		3	3	
		using Charles' Law						
		V at 293K = $\frac{0.135 \times 293}{298}$ (1)						
		$V \text{ at } 293K = 133 \text{ cm}^3$ (1)						

Quest	ion Marking	details Marks available

			AO1	AO2	AO3	Total	Maths	Prac
(iv)	I	tangent drawn at t = 0 (1)		1			1	
		gradient = $8.75 \text{ cm}^3 \text{ min}^{-1}$ (1) (accept value in range $8.5 \text{ to } 11$) initial rate = $8.75 \times 10^{-3} \text{ dm}^3 \text{min}^{-1}$ (1) (accept value in range $8.5 \times 10^{-3} \text{ to } 11 \times 10^{-3}$)		1	1	3	1	
	II	$k = 8.75 \times 10^{-3} = 7.95 \times 10^{-2}$ (1) ecf possible from part I unit of rate constant = $\frac{\text{dm}^3 \text{ min}^{-1}}{\text{mol dm}^{-3}} = \text{mol}^{-1} \text{ dm}^6 \text{ min}^{-1}$ (1)		2		2	2	
		Question 2 total	6	14	1	21	11	4

0			Mauldon data	.ii.a			Marks a	available)	
Questi			Marking deta		AO1	AO2	AO3	Total	Maths	Prac
3	award (1) fo	or each ion o	correctly identified	d						
	Inorga	nic salt	Cation	Anion						
		Р	Mg ²⁺	I ⁻						
		Q	Pb ²⁺	NO ₃ ⁻						
		R	Fe ²⁺	SO ₄ ²⁻						
		S	Ba ²⁺	CI ⁻			8			8
	Mg ²⁺ (aq) +	2OH⁻(aq) 2I⁻(aq) → 2OH⁻(aq)	\rightarrow Pb(OH) ₂ (s)		1	1		10		
	Pb ²⁺ (aq) +	SO ₄ ²⁻ (aq)	\rightarrow PbSO ₄ (s)							
	Fe ²⁺ (aq) +	2OH⁻(aq)	\rightarrow Fe(OH) ₂ (s)							
	Ba ²⁺ (aq) +	SO ₄ ²⁻ (aq)	→ BaSO ₄ (s)							
				Question 3 total	1	1	8	10	0	8

	06	ation.	Marking dataila			Marks a	available	•	
	Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
4	(a)	(i)	distance travelled by alanine = 2.2 (1)						
			$R_{\rm f} = 0.275 / 0.28$ (1)		2		2	1	2
			ecf possible for incorrect distance travelled by alanine						
	(ii)		spot 1 corresponds to both glycine and serine (as they have the same $R_{\rm f}$ value)			1	1		1
		(iii)	award (1) for each of following spot drawn above spot 1 at 3.3 cm						
			spot drawn above spot 1 at 3.7 cm spot drawn above spot 2 at 4.6 cm spot drawn above spot 3 at 5.9 cm			4	4		4
	(b)		correct structure drawn						
			e.g. $H_3C \longrightarrow H_3 C \longrightarrow $		1		1		
			Question 4 total	0	3	5	8	1	7

Question		Mouldon detaile				Marks a	vailable			
Q	ues	tion	warking details			AO2	AO3	Total	Maths	Prac
	tues (a)	(i)	Statement Calculate the number of moles of X in the aqueous layer Calculate the mass of X in the organic layer and hence its concentration in mol dm ⁻³ Calculate the number of moles of NaOH used in the titration Calculate the value for the equilibrium constant <i>K</i> at 298K Calculate the mass of X in the aqueous layer and hence its concentration in mol dm ⁻³ Calculate the number of moles of X in 25.0 cm ³ of the aqueous layer	Correct order 3 5 1 6 4 2	AO1	AO2			1	Prac

Ougstion	Marking details			Marks a	vailable		
Question	warking details	AO1	AO2	AO3	Total	Maths	Prac
(ii)	n(NaOH) = 0.00047 mol (1) $n(\mathbf{X}) \text{ in } 25 \text{ cm}^3 \text{ of aqueous layer} = 0.00047 \text{ mol}$ $n(\mathbf{X}) \text{ in } 200 \text{ cm}^3 \text{ of aqueous layer} = 0.00376 \text{ mol}$ (1) $mass \text{ of } \mathbf{X} \text{ in } 200 \text{ cm}^3 \text{ of aqueous layer} = 0.436 \text{ g}$ (1) $mass \text{ of } \mathbf{X} \text{ in } 200 \text{ cm}^3 \text{ of organic layer} = 14.564 \text{ g}$ (1) $K = \underbrace{0.1256}_{0.00376} = 33.4$ (1) ecf possible throughout		5		5	4	
(b)	for a 23.50 cm ³ titre percentage error = $2 \times 0.05 \times 100 = 0.43 \%$ 23.50		1		1		1

0				Marks a	vailable		
Question	Marking details	AO1 AO2 AO3		Total	Maths	Prac	
(c) (i)	n(X) in 200 cm ³ aqueous solution = 0.00376 mol						
	$c = \frac{0.00376}{0.200} = 0.0188 \text{ mol dm}^{-3}$ (1)						
	ecf possible from part (a)(ii)						
	$[H^+] = \sqrt{(1.32 \times 10^{-5}) \times 0.0188} = 4.98 \times 10^{-4} \text{ mol dm}^{-3}$ (1)		3		3	3	
	pH = $-\log 4.98 \times 10^{-4} = 3.30$ (1)						
(ii)	x-axis scale of 0 to 50 and labelled as volume of NaOH solution (cm³) y-axis	1					
	scale of 0 to 14 and labelled as pH (1) starting pH of 3.30 [allow ecf from part (i)] and volume of NaOH used at endpoint 23.50 cm ³ and vertical portion of curve at 23.50 cm ³ (1)	l					
	correct sketch of the curve – vertical portion and correct shape in the buffer region and pH rising to \sim 12 and extending beyond 45 cm ³ of NaOH (1)						
	pH at equivalence point > 7 (1)			4	5		
	any two of following labelled (1) buffer region, half-equivalence point, equivalence point, end point						
	Question 5 total	1	9	5	15	7	2

COMPONENT 3: CHEMISTRY IN PRACTICE

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
1	2	4	0	6	0	4
2	6	14	1	21	11	4
3	1	1	8	10	0	8
4	0	3	5	8	1	7
5	1	9	5	15	7	2
Totals	10	31	19	60	19	25

A410U30-1 EDUQAS A LEVEL CHEMISTRY - COMPONENT 3 SUMMER 2018 MS